[]:

Assignment 3 - Intégration et dérivation numérique
April 7, 2025

1 Assignment 3: Formule de quadrature d’ordres elévés

On considére une fonction f : [a,b] — R dans C°([a,b]). On est intéressé & approcher I'intégrale

I(f) = fa ’ f(z) dx en utilisant des formules de quadrature d’ordres elévés.

import matplotlib.pyplot as plt
import numpy as np

from scipy.special import erf, expi
from scipy.integrate import quad

1.1 Partie 1

Dans un premier temps, nous essayons d’approximer l'intégrale de f en exploitant des régles de
quadrature simples (c-a-d non composites), de la forme

b n
I(f) = / fo) do 1, (5) = Y w, flz)

Ces régles ont été construites a partir de l'interpolation polynomiale d’ordre élevé sur des noeuds
équidistribués, c-a-d

ou IL, (f) est 'interpolée de Lagrange de f sur des noeuds équidistribués.

(b—a
Plus précisément, nous considérons : * nceuds : équidistribués dans [a, b], donc z; = a+1 < 1)
n —
* poids : calculés a partir des fonctions de base de Lagrange définies sur les noeuds afin de garantir

. . : b
le degré d’exactitude maximale, donc w; = fa ;(z) dz.
On considere la fonction

1 ; (2) 22 —4
= ——— et Kyolx) = .
1 — 2y + 4y? 2 4

R(x) = 1= my(Ry(z)) avee ry(y)

Approximer I'intégrale de x dans [—3,3] pour n = 27 + 1 noeuds, avec j = 1,2,--,5, et comparer
le résultat avec une estimation précise de l'intégrale (donnée).

Discuter les résultats obtenus. En particulier, est-ce que l'estimation de l'integrale s’améliore
lorsqu’on considére plus de noeuds de quadrature ? Pourquoi 7 (Réponse 1)

[1: def Lagrange(n):

mnn

Compute Lagrange quadrature nodes and weights on equidistant nodes iny

o[-1,1].

Inputs: [n]
n : Number of nodes.

Outputs: [z, w]
x : Equidistant nodes in [-1,1].

w : Quadrature weights.
nmnn

x = np.linspace(-1, 1, n)
w = np.zeros(n)

for i in range(n):
Define Lagrange basis function
def lagrange_basis(_x):
res = 1
for j in range(n):
if i !'= j:
res *= (_x - x[j1) / (x[i] - x[3D)

return res

Integrate the Lagrange polynomial over [-1,1]
w[il, _ = quad(lagrange_basis, -1, 1)

return x, w

[1: k2 = lambda x : (x*x*2 - 4) / 4
k1 = lambda y : 1 / (1 - 2%y + 4xy*x2)
k = lambda x : 1 - k1(k2(x))
a, b =-3, 3

IexactK, _ = quad(k, a, b)
print(f'A precise estimate of the value of the integral is {IexactK:.7f}')

X = np.linspace(a, b, 1000)
y = k(x)

plt.plot(x, y, 'b")

plt.xlabel('x'); plt.ylabel('$£(x)$")
plt.title(r'Plot of $k(x)$"')
plt.x1lim([a,b])

plt.grid()

plt.show()

[]: n_range = [2%*k + 1 for k in range(1,6)]

for n in n_range :
nodes, weights = ## COMPLETE HERE ## (nodes and wetights in [-1,1])

nodes = ## COMPLETE HERE ## (rescale nodes to [a,b])

weights = ## COMPLETE HERE ## (rescale weights to [a,b])
intQuad = ## COMPLETE HERE ## (compute integral)
errQuad = ## COMPLETE HERE ## (compute error)

print(f"n ={n:3d} - "
f"Approximated integral: {intQuad:2.4f} - "
f"Error: {errQuad:.2el}")

1.1.1 Commentaire

Réponse 1 A completer

1.2 Partie 2

Maintenant, on considére des regles de quadrature composites, en subdivisant I'intervalle
d’intégration [a, b] en N sous-intervalles plus petits.

Ecrivez une fonction qui implemente une formule de quadrature composite, étant donnée les noeuds
(dans l'intervalle de reference [—1,1]), les poids, les extrémes de l'intervalle d’integration [a, b] et le
nombre de sous-intervalles N.

La fonction doit avoir la structure suivante:

def QuadratureComposite(nodes, weights, a, b, N, f)
Function that implements a composite quadrature rule, being given in
input the nodes (in [-1,1]), the weights, the integration interval bounds,
the number of sub-intervals and the integrand function.

Inputs: [nodes, weights, a, b, N, fJ]

nodes : quadrature nodes (in [-1,1])

weights : quadrature weights

[a,b] : integration interval

N : number of sub-intervals

#f : function to integrate

#

Outputs : [Lh]

Lh : integral of f in [a,b], approzimated with the prescribed compostite quadrature

[1: def QuadratureComposite(nodes, weights, a, b, N, f)
"""Function that implements a composite quadrature rule, being given in
input the nodes (in [-1,1]), the weights, the integration interval bounds,
the number of sub-intervals and the integrand function.

Inputs: [nodes, weights, a, b, N, f]

nodes : quadrature nodes (in [-1,1])
wetights : quadrature weights

[a,b] : integration interval

N : number of sub-intervals

f

: function to integrate

Outputs : [Lh]

Lh

: integral of f in [a,b], approzimated with the prescribed,

~compostite quadrature rule

nimnn

M = len(nodes)
if len(nodes) != len(weights):
raise ValueError(f"Invalid value of M: {M}")
H = ## COMPLETE HERE ## (size of the sub-intervals)
X = ## COMPLETE HERE ## (points defining sub-intervals)
Lh =0
for k in range(N)

z = ## COMPLETE HERE ## (local quadrature points)
Jgk = ## COMPLETE HERE ## (local quadrature rule)

Lh += Jgk

Lh *= ## COMPLETE HERE ## (rescale Lh)

return Lh

1.2.1 Formules de quadrature de Gauss-Legendre-Lobatto.

Dans ce test, on prend les nceuds et les poids de quadrature de Gauss-Legendre-Lobatto (GLL),
qui conviennent a l'intégration numerique d’ordre élevé.

La fonction GaussLegendreLobatto ci-dessous retourne les M noeuds (dans l'intervalle de reférence
[—1,1]) et les M poids de quadrature pour les formules de GLL.

Remarque: seulement les cas M = 2,3,4,5 sont considerés.

poids (dans le méme ordre

M noeuds (dans [1,1]) que les noeuds)
2 1,1 1,1
141
~1.0.1 - 22
3 707 37373
4 1 :1[5 115 1 1551
5 7 57 6666

[1:

[1:

poids (dans le méme ordre
M noeuds (dans [1,1]) que les noeuds)

—v21 V21 1 1 49 32 49 1
107907457907 10

def GaussLegendreLobatto (M) :
"""Returns the GaussLegendreLobatto (GLL) quadrature nodes and weights for,
~the given value of M.

Inputs s [M]

M : number of quadrature nodes and weights
Outputs

nq : quadrature nodes (in [-1,1])

wq : quadrature weights

if M ==

ng = np.array([-1.0, 1.0])
wq = np.ones (M)
elif M == 3:
nq = np.array([-1.0, 0.0, 1.0])
wq = np.array([1/3, 4/3, 1/3])
elif M == 4:
nq = np.array([-1.0, -np.sqrt(5)/5, np.sqrt(5)/5, 1.0])
wq = np.array([1/6, 5/6, 5/6, 1/6])
elif M == 5:
ng = np.array([-1.0, -np.sqrt(21)/7, 0.0, np.sqrt(21)/7, 1.0])
wq = np.array([1/10, 49/90, 32/45, 49/90, 1/10])
else:
raise ValueError(f"Invalid value of M: {M}")

return ng, wq

1.3 Partie 3

Estimez numériquement le degré d’exactitude des formules de quadrature simples (i.e. pas compos-
ite, N = 1 sous-intervalles) de Gauss-Legendre-Lobatto (GLL) avec M = 4. Est-ce que les résultats
obtenus sont en accord avec la théorie? (Réponse 2)

Checking quadrature fonction
a, b=1, 4

with lambda functions, it is possible to determine a parameter (here d)
at a later moment
monomial = lambda x : x**d

[]1:

[1:

recording for which degrees the monomial integral is exact (up to epsilon)
exactDegree = -1
epsilon = le-12

M=4
nodes, weights = ## COMPLETE HERE ## (GLL nodes in [-1,1])

N=1
for d in range(10)
intQuad = ## COMPLETE HERE ## (approzimate integral of 'monomial')
intExact = ## COMPLETE HERE ## (ezact integral of 'monmomial')
print (f'Quadrature on monomial x~{d} : {intQuad:.4f} - {intExact:.4f} =,
~{intQuad-intExact:.6e}"')

if np.abs(intQuad-intExact) < epsilon :
exactDegree = d

print (f'\nGLL composite quadrature with N = {N} and M = {M} is exact up to,
~degree {exactDegreel}')

1.3.1 Commentaire

Réponse 2 A completer

1.4 Partie 4

efE
Considerons maintenant la fonction f(z) = e " 4 —.
x

Approximer I(f) = f(x) dz en utilisant les formules de quadrature de GLL composites avec
1/¢

M =2,3,4,5 et N = 27 sous-intervalles pour j = 3,4, 5, 6.

Ensuite calculer les erreurs ng LJE(H=I(f)—1 gLJLV()], ou I é‘f LJLV(f) represente I'approximation

de l'integral de f obtenue avec la formule de quadrature de GLL composite, avec N sous-intervalles
et de degré M.

Dessiner les erreurs en fonction de H sur une échelle logarithmique sur les deux axes. Que peut-on
deduire par rapport aux ordres de convergence ? Sont-ils en accord avec la théorie? Motivez votre
réponse (Réponse 3).

f = lambda x : np.exp(-x**2) + np.exp(x) / x
a, b =1/ np.exp(1), np.exp(1)

IexactF = (erf(b) - erf(a)) * np.sqrt(ap.pi) / 2 + (expi(b) - expi(a))
print (f'The exact value of the integral of f is {IexactF:.7f}')

np.linspace(a,b,1000)
f(x)

< ™
o

[]1:

plt

plt.
.title(r'Plot of $f(x) = e"{-x"2} + \dfrac{e"x}{x}$')
plt.
.x1im([a,b])
.grid()
.show()

plt

plt
plt
plt

.plot(x, y, 'b")

xlabel('x'); plt.ylabel('$f(x)$')

ylim([0, 1.1*np.max(y)])

Mrange = np.array([2, 3, 4, 5])
Nrange = np.array([2**k for k in range(4, 9)])

for

M in Mrange :
nodes, weights = ## COMPLETE HERE ## (GLL nodes in [-1,1])
errQuad = []

for N in Nrange :
intQuad = ## COMPLETE HERE ## (approzimate integral of f)
errQuad.append() ## COMPLETE HERE ## (error)

H = (b-a) / Nrange
slopeQuad = (np.log(errQuad[-1]) - np.log(errQuad[0])) / (np.log(H[-1]),

~— np.log(H[0]))

print (f'Pour M = {M}, La convergence numérique est environ de {slopeQuad:.

<2f}")

plt.figure(figsize=(6,3))
plt.loglog(H, errQuad, 'b-o')

plt.loglog(H, H**(2+M-2) * (errQuad[0]/H[0]**(2*M-2))*2, 'k:')
plt.loglog(H, H#*(2+M-1) * (errQuad[0]/H[0]**(2+M-1)), 'r:')

plt.title(f"Errors for M={M}", fontweight='bold')
plt.legend(['GLL', f'$H"{2*M-2}$', £'$H {2+«M-1}$'])
plt.xlabel(r'H'); plt.ylabel('error')

xticks = [4%10%*%(-2), 6*%10**(-2), 8x10%*(-2), 10%*(-1), 2*10**(-1)]
plt.xticks(xticks)
plt.grid(which='major', linestyle='--"')

1.4.1 Commentaire

Réponse 3 A completer

[1:

[1:

1.5 Partie 5

Répéter la Partie 4, mais en considerant la fonction gy : [—1, 1] — R definie comme suit
er fe<-—-K
gr(r) =gz’ + |z if —K<z<K (1)
e ™ ife>K
avec K = 0.70, ¢y = —%e‘K, g = e K (1+ %) et en prenant N = 2¥, k = 3,4,5,6 sous-
intervalles.

On a que l'integrale exacte de gy est égale &

1
2 2
I —/ gx () dsze_K—f—i-chK?’—i-bK?
1 €

9K

Quels sont les ordres de convergence numérique obtenus? Sont-ils égaux a ceux obtenus avec la
fonction f? Pourquoi?(Réponse 4)

a,
K
cO0 = -(K+1)/K**2 * np.exp(-K)
cl = (1+2/K) * np.exp(-K)

g = lambda x : (np.exp(x)*(x<=-K) +
(cO * xx*2 + cl * np.abs(x))*(x>-K)*(x<=K) +
np.exp (-x)*(x>K))

TexactG = (2*np.exp(-K) - 2*np.exp(-1) + 2*c0/3*K**3 + cl*Kx*2) / 1 # ezact,
<value of the integral of g
print (f'The exact value of the integral of g is {IexactG:.7f}')

np.linspace(a,b,1001)
y = g(x)

™
]

plt.plot(x, y, 'b')

plt.xlabel(r'x'); plt.ylabel(r'$g(x)$")
plt.ylim([0, 1.1*np.max(y)])
plt.x1lim([a,b])

plt.grid()

plt.show()

Mrange = np.array([2, 3, 4, 5])
Nrange = np.array([2**k for k in range(4,9)])

for M in Mrange :
nodes, weights = ## COMPLETE HERE ## (GLL nodes in [-1,1])
errQuad = []

for N in Nrange:
intQuad = ## COMPLETE HERE ## (approzimate integral of g_K)
errQuad.append() ## COMPLETE HERE ## (error)

H = (b-a) / Nrange
slopeQuad = (np.log(errQuad[-1]) - np.log(errQuad[0])) / (np.log(H[-11),
<= np.log(H[0]))

print(f'Pour M = {M}, La convergence numérique est environ de {slopeQuad:.
2f}")

plt.figure(figsize=(5,3))
plt.loglog(H, errQuad, 'b-o')

plt.loglog(H, H**2 * (errQuad[0]/H[0]**2)*2, 'k:')
plt.loglog(H, H**3 * (errQuad[0]/H[0]*%3)/2, 'r:')
plt.loglog(H, H**(2xM-2) * (errQuad[0]/H[0]**(2+M-2))/2, 'g:')

plt.title(f"Errors for M={M}")
plt.legend(['GLL', '$H"2$', '$H"3$', '$H"{2M-2}$'])
plt.xlabel('H'); plt.ylabel('err')

xticks = [2%10%*(-2), 4x10*%xx(-2), 6%x10%x(-2), 8*%10%*(-2), 10*x(-1),,
2%10xx (-1)]

plt.xticks(xticks)

plt.grid(which='major', linestyle='--')

1.5.1 Commentaire

Réponse 4 A completer

2 Quelques petites questions finales (pas évaluées)

e What types of collaboration strategies did your group use?

— Work in pairs on different sections.

— Work individually on different sections.

— Work together on the same section with one notebook opened.

— Work together on the same section with multiple notebooks opened.
— Other (please specify).

o How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

o How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

Please report your answers here. Thank you!

10

	Assignment 3: Formule de quadrature d'ordres elévés
	Partie 1
	Commentaire

	Partie 2
	Formules de quadrature de Gauss-Legendre-Lobatto.

	Partie 3
	Commentaire

	Partie 4
	Commentaire

	Partie 5
	Commentaire

	Quelques petites questions finales (pas évaluées)

